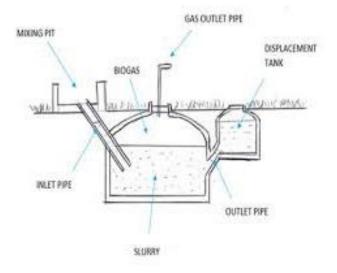
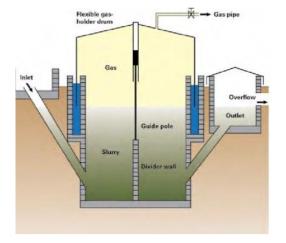


- Convert wet waste to methane and carbon dioxide
 - Usually from animal dung
- Slow continuous process of methanation
- Gas builds up in a gas holder for later use
 - Low calorific value
- Competing use for clean cooking
 - Indoor air pollution one of the world's biggest killers
- Some struggle to maintain the bacterial culture in the digester
- Helps to improve hygiene
- Hydrogen sulphide must be removed

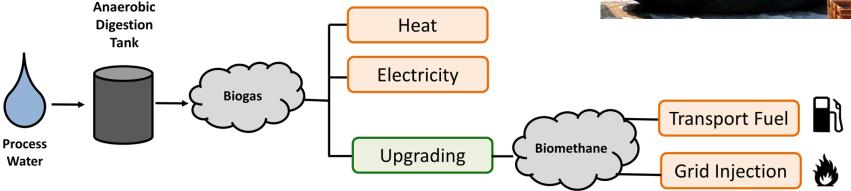




Renewable energy generation Digester designs

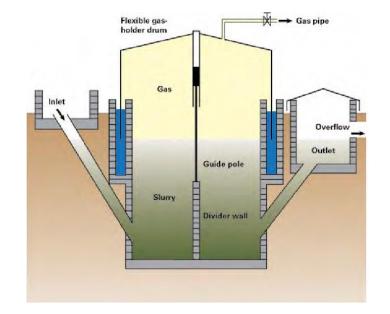
Fixed Dome Digesters

Balloon Digesters

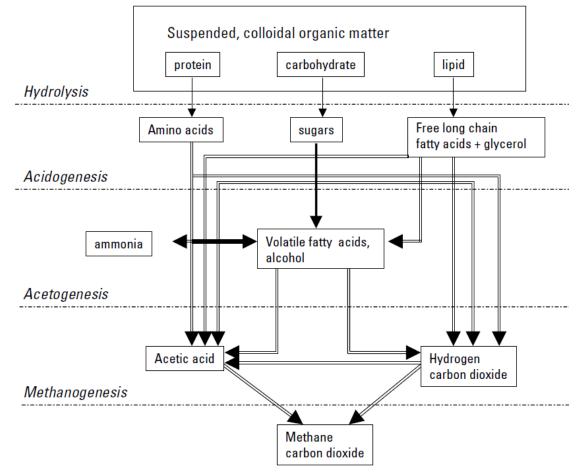

Floating Dome Digesters

Biogas can be used for cooking, electricity or can be upgraded to produce higher quality gas for use as a transport fuel or for GRID injection

If linked to a Gen-Set, AD can generate power all day or biogas can be stored in balloons for when needed.



The utilisation of biogas for power generation diverts its use as a **renewable clean cooking fuel** which in some developing countries may not be beneficial


Biogas is produced by the breakdown of organic matter in the absence of oxygen. This is by a process called anaerobic digestion.

Typical composition of biogas					
Methane	50% - 75%				
Carbon dioxide	25% - 50%				
Nitrogen	0% - 10%				
Hydrogen	0% - 1%				
Hydrogen sulphide	0% - 3%				
Oxygen	0% - 2%				

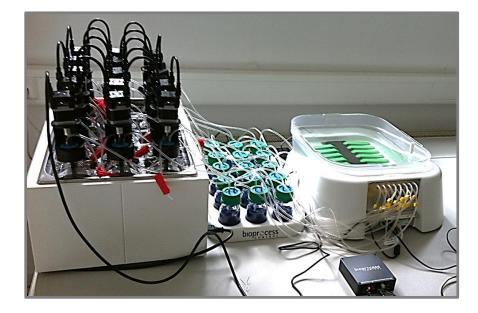
Feedstocks: sewage sludge, food waste, agricultural wastes, manure etc

Anaerobic digestion proceeds in **4 defined stages**

- Hydrolysis,
- Acidogenesis,
- Acetogenesis
- Methanogenesis

Source: Wageningen University

What sources of biomass could be used?


Cow Dung, Food waste, human fecal matter, Agricultural residues, Energy crops (e.g.) miscanthus, Aquatic biomass (e.g. Water hyacinth)

Availability: Some seasonal and some available all year round

Measurement of Biochemical methane potential (BMP)

- BMP conditions:
 - AMPTS at Mesophilic 37 °C for 30 days (500 ml bottles)
 - Ratio 2:1 inoculum to substrate (400 ml total volume)
 - 4 g COD in 200 ml water + 2 g SVS in 200 ml (10 g/L concentration)
 - Inoculum from WWTW (sludge fed)

What is biomass potential availability?

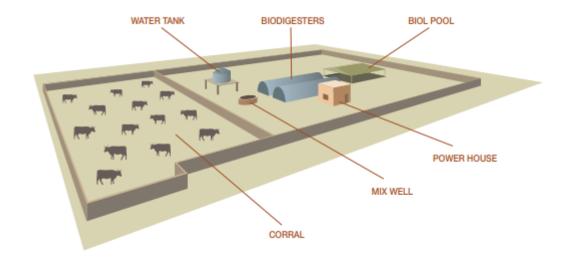
Biomass	Seasonal variation	Amounts		
Cow manure	All year round	~20-30kg (wet wt.) /cow/d		
Food Waste	All year round ~0.2-0.5 kg (wet wt.) /person/c			
Human fecal matter	All year round	~0.25 kg (wet wt.)/person/d		
Water Hyacinth	Seasonal (Jan-Jun)	0.5 kg (wet wt.)/m²/day		
Miscanthus	Seasonal (Nov-Feb)	1.5 Kg m ² /year/harvest		
#Cereal crops (straws)	Seasonal (Jul-Sept)	0.3 kg (wet wt.)/ m ² /harvest		
Rice straw	Seasonal (2-3 harvests)	0.1 kg (wet wt.)/m ² /harvest		

#Some used for paper pulping, lot of it is burnt in the fields

How much biogas can be generated based on realistic production rates?

Feedstock	BMP (ml CH ₄ /g VS) (dry basis)	Availability (wet wt.) (kg)	Ash (%)	H ₂ O (%)	Biogas I/kg feed (wet wt.)
Food waste	200#	0.5	10	90	36
Fecal matter	100	0.15	4	80	38
Cow Dung	200	20 /cow/d	10	80	72
Water Hyacinth	180	0.5 kg/ m ²	20	90	29
Cereal straw	150	0.3 kg /m ²	5	10	260
Miscanthus	180	1.5 kg/ m ²	3-4	40	216
Rice straw	120	0.2 kg /m ²	15-20	10	160

depends on composition Assuming 50/50 methane/CO₂


Source: Phyllis2

Santa Rosillo anaerobic digester, Peru

- 16kW capacity for 224 people (50 HH)
- Access is \$6/month
- \$130,000 cost
- Communal farm of 67 animals
- Slurry is the most valuable product of the system

