


- Possibly the go-to option if possible
- Range from several watts to megawatts
- All-day power
- Automatic
- Can have issues with rainy/dry seasons

UNIVERSITY OF LEEDS

Other terms used: -low head, -low pressure -often run of the river

Pico	< 5 kW
Micro	5-100 kW
Mini	100 kW to 2 MW
Small	2 MW to 25 MW

Examples are a small mill set in the rapids of a fast-moving stream or turbine-generator located in diverted portion of river

Predicting hydropower availability

- Availability is less time-dependent than solar
 - May change season-to-season
- Scope areas around proposed microgrid or use maps
- Consider the distance of power lines between hydropower source and load
 - Think about cost of powerlines and power losses
- Measure the head i.e. the vertical distance the water flows
 - Want to find a point where a large change occurs in a short horizontal distance
- Low head more suited for submersible turbines (as little as a foot of head) and run-of-theriver
- High head more suited for dam or penstock type designs
- The greater the head, the cheaper the turbine

Predicting hydropower availability

- Calculate the flow rate
 - Measure the cross section of the river section with a weighted float
 - Measure the time it takes for the float to travel between two points on the river
 - Flow rate = (Distance float travels/time) x cross section

Conservation of mechanical energy

 $P = \eta \rho Q g H = \eta \rho \langle v \rangle A g H = \eta \rho A \sqrt{2} (g H)^{1.5}$

 $P \propto H^{1.5}$ $Q \propto H^{0.5}$

Case studies- microhydro

UNIVERSITY OF LEEDS

GHANDRUK MICRO HYDRO PROJEC

CAPACITY : 50 KWATT DISCHARGE : 35 LTR/SEC. HEAD : 220 M HEAD RACE MPE : 180 MM (HDEP PIPE 3470 M) PEN STOCK PIPE: 540 M LENGTH PEN STOCK PIPE: 160 MM DIAMETER TURRINE : PELTON.1-JET GENERATOR : 85 KVA.STAMPFORD PROJECT COST : NRS.34,00,000-F COMMISSIONED DATE : MAY 1992 TECHNICAL SUPPORT : DCS.BUTMAL & ITDG LOHOON THANCIAL SUPPORT : DCS.BUTMAL & ITDG LOHOON THANCIAL SUPPORT : DCS.BUTMAL & ITDG LOHOON THANCIAL SUPPORT : DCS.BUTMAL & ITDG LOHOON CIDA-CANADA.WWF-US &.KMT-UN CIDA-CANADA.WWF-US &.KMT-UN CIDA-CANADA.WWF-US &.KMT-UN CIDA-CANADA.WWF-US &.KMT-UN

AGEMENT SUB-COMMITTEE

- 50kW station cost \$51,000
- 283 households connected (176 W each)
- Promotion of low wattage cookers to drive demand
- Hotels provided an area for productive use