

Renewable Energy generation Solar PV

Solar PV Considerations

Solar PV is the cheapest renewable electricity generation approach however it does have some key drawbacks:

- Solar PV (like wind power) is intermittent and cannot be controlled by operators
- Peak supply and demand of the renewable energy technologies like solar energy do not match and hence create a gap
- Energy storage is therefore needed and batteries are expensive.

The **duck curve** shows electricity demand over the course of a day and shows the timing imbalance between **peak demand** and **renewable energy production**.

PV Installation options

Solar PV produces DC current and therefore needs an invertor

The majority of simple Solar PV systems used in developing countries are 'stand alone' system.

- Solar PV can be configured in different ways:
- A GRID connected installation requires and inverter to convert to AC current
- A stand alone installation is used to charge batteries and uses DC current

Irradiance is the optical energy incident on a surface. The SI units are W m⁻²

Irradiance at top of atmosphere Irradiance at surface (standard)

1.4 kW m⁻² 1.0 kW m⁻²

The power per unit area of electromagnetic radiation over all wavelengths. I = P/A

Measuring Irradiance

Irradiance datasets will be used as input to electrical models. High-accuracy low-frequency data from pyranometer. Low-accuracy high-frequency data from silicon sensors.

Insolation maps

Insolation maps

GLOBAL HORIZONTAL IRRADIATION

 θ

Zenith angle, θ_z The angle between the vertical and the Sun.

Surface of the earth

Horizontal irradiance Angled irradiance

$$\frac{I_{\text{horizontal}}}{I_{\text{angled}}} = \frac{A_{\text{angled}}}{A_{\text{horizontal}}} = \cos\theta_{z}$$

 θ_{t}

Surface of the earth

Relationships depend on geometry Usually $\theta_i = |\theta_z - \theta_t|$ $I_{\text{panel}} = I_{\text{normal}} \cos \theta_i$

DNI = Direct Normal Irradiance

Hour angle, ω The angular position of the sun (east or west). 360° corresponds to 24 hours.

Declination, δ The angular position of the sun at noon relative to the plane of the equator.

This equation calculates the zenith angle. As a function of hour angle, it provides solar energy variability.

 $\cos \theta_z = \sin \delta \sin \phi + \cos \delta \cos \phi \cos \omega$ $\theta \text{ is the zenith angle}$ $\phi \text{ is the latitude}$ $\omega \text{ is the hour angle}$ $\delta \text{ is the declination}$

PV electrical characterisation

$$I_{\rm ph} = I_{\rm j} + I_{\rm pv}$$
$$I_{\rm pv} = I_{\rm ph} - I_{\rm j}$$

$$I_{\rm pv} = I_{\rm ph} - I_0 \left(e^{V_{\rm pv}/kT} - 1 \right)$$

$$P_{\rm pv} = I_{\rm pv} V_{\rm pv}$$

PV electrical characterisation

Fill factor is a figure of merit for PV. The higher the better. A typical value is 0.7

Renewable energy generation Solar

Predicting solar availability

Several approaches using historical data

Satellite data	Ground observations from meteorological stations	Measure at proposed site ourselves
Decades of data for the entire world	Decades of data from locations throughout the world	Possibly a few years of data at exact point of construction
Typical resolution is 10-100km	Nearest location could be long distance from proposed site	Designed to collect the exact data required
Low frequency data	High frequency data	High frequency data
Tends to overestimate solar irradiance	Observation sites scarce in remote areas	Highly accurate
		Data collected may be from a year when weather was different from the typical

- Historical meterological station data available through Global Energy Balance <u>https://geba.ethz.ch/</u>
- <u>https://www.meteoblue.com/</u> has satellite weather data

Predicting solar availability

- Need to condense years of data into a few typical days to apply to microgrid model
 - Days might reflect different seasons

Case studies – Solar/Diesel Hybrid

Kalangala island, Uganda

- Hybrid power station: Three diesel generators (1 MW total), sun tracking solar PV (600 kW) and battery storage
- In the progress of connecting to the main land
- Low demand, high tariffs
- Operates on solar during the day, generators in the evening and batteries overnight

