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A microgrid

❖ A part of a larger electrical network that can be controlled by a local operator

❖ Consists of conventional and renewable generation units, storage devices and loads

❖ Can typically be operated grid-connected and in islanded mode 

Main goals

❖ Efficient integration of renewable energy sources

❖ Simplify coordination and control tasks in networks with large share of DG units

❖ Reduction of energy costs through appropriate energy management

❖ Increase reliability within the microgrid
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Minutes

Seconds

Months

Hours - days

Hours

Renewable generation introduces harmonics
and affects power supply quality.  

Rapid ramping to respond affecting power 
frequency characteristics. 

Daily peak for electricity is greater to meet 
demand.

Variability of renewable energy generation 
needs back-up supply or demand response. 

Seasonal changes in renewable energy sources 
and load demands. 

Energy Storage System (ESS) is one of the efficient ways to deal with such issues

Challenges of integrating distributed renewable generations 
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Energy Storage Systems

Mechanical

• Pumped hydro 
storage (PHS)

• Compressed air 
energy storage (CAES)

• Flywheel

Electrical

• Double layer 
capacitor (DLC)

• Superconducting 
magnetic energy 
storage  (SMES) 

Electrochemical

• Battery energy 
storage systems 
(BESS).

Chemical

• Fuel cell
• Substitute nature gas

Thermal

• Sensible heat storage
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Battery ESS

External
Internal

High Temperature Low Temperature Redox flow Fuel cell
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Gravimetric 

energy 

density 

(Wh/kg)

Gravimetric 

power 

density 

(W/kg) 

Volumetric 

energy 

density 

(Wh/L)

Volumetric 

power 

density 

(W/L)

Nominal 

cell voltage 

(V)

Charging 

Temperature 

(OC)

Discharging 

Temperature 

(OC)

Daily Self-

Discharge 

rate (%)

Lifetime 

(Years)

Cycle life 

(Cycles)

Environment 

impact 

Lead-acid 

battery
30 - 50 75 – 300 50 – 90 10 – 400 2 -20 – 50 -20 – 50 0.05 – 0.3 5 – 15 500 – 2000 Serious

Ni-Cd 

battery
50 – 75 150 – 300 60 – 150 75 – 700 1.2 0 – 45 -20 – 65 0.2 – 0.6 15 - 20 1500 - 3000 Serious

Ni-MH 

battery
54 – 120 200 – 1200 190 – 490 500 – 3000 1.2 0 – 45 -20 – 65 1 – 2 15 – 20 1500 – 3000 Medium

Zebra 

battery
100 – 120 150 – 200 150 – 180 220 – 300 2.58 270 – 350 270 – 350 10 – 15 10 – 20 >25000 Slight

Lithium-ion 

battery
150 – 250 500 – 2000 400 – 650

1500 –

10,000
3.3 – 3.7 0 – 45 -20 – 60 0.1 – 0.3 8 – 15 1000 – 10,000 Slight

Comparison of several popular battery technologies

Energy density Efficiency
(%)

Life Cycle Cost Safety issue

Lead-Acid Low 85-90 500-1000 Low Toxic/ Pollution

Lithium-ion High 87-92 1000- High Potential Fire Hazard

NaS High 75 2500 Low Potential Fire Hazard

VRB Low 65-75 10000+ High
(Expensive Membrane Required)

V(V5+)is Toxic

Single flow ZNB Low 65-85 5000-10000 Low
(Abundant and cheap materials )

Ignored

Battery Energy Storage Systems
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Lithium-ion battery

• The operation mechanism is based on the movement of lithium-ions.

• Cathode: layered structure of lithium cobalt oxide (LiCoO2), Nickel manganese acid, lithium
ternary material (Li (Ni, Co, Mn) O2), spinel-structure lithium manganese oxides, olivine-type
lithium iron phosphate and other lithium manganese oxide

• Anode: Carbonaceous materials (graphite, graphene, et), alloy/de-alloy materials such as Si, Sn,
Al, Mg, etc.; and conversion reaction materials such as metal oxides (Fe3O4, Co3O4, Fe2O3 etc.)

Battery Energy Storage Systems
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Elect rolyte Elect rolyte

Membrane

Elect rode

Pump

Power source/load

+ -

Pump

Elect rode

Large-scale RFB 

Small-size RFB 

• Separated electrolyte and stacks - stored capacity 
and the rated power

• Easy to scale up 
• Cost friendly 
• Extremely safe 
• Fast respond speed 
• Easy to install and control 

Redox flow battery

Battery Energy Storage Systems
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Generation Level

• Renewable energy 
integration

• Peak shaving 

• Price arbitrage

• Frequency 
regulation

• Spinning reserve

Transmission and 
Distribution Level

• Network 
investment deferral

• Black-start

• Voltage support

• Congestion relief

End-user Level

• Power quality and 
reliability

• Demand side 
energy 
management

BESS applications in grid

Battery Energy Storage Systems
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Generation Level

• Renewable energy 
integration

• Peak shaving 

• Price arbitrage

• Frequency regulation

• Spinning reserve

• Damping the variability of the renewable energy system and providing time shifting.

• Duration of wind integration: 15 minutes (voltage support), 5 – 10 hours (off-peak storage).

• Duration of PV integration: 15 minutes – 4 hours. 

• Avoid the installation of capacity to supply the peaks of a highly variable load

• BESS can provide fast response (milliseconds)  and emission-free operation. 

• Reducing the need for peaking units.

• Time shift: Charging the BESS during periods when the prices or system marginal costs
are low, the stored energy can be used or sold at a later time when the price or cost are
high.

• BESS operating cost and storage efficiency are especially important for this application.

• The BESS is charged or discharged in response to an increase or decrease of grid
frequency and keeps it within pre-set limits (49.5 – 50.5Hz).

• BESS can proved fast response to meet the Primary (10 – 30s), secondary (30s – 30min)
and high (10s) frequency response.

• The BESS is maintained at a specific SOC level ready to respond to a generation outage.
• Depending on the application, the BESS can response within milliseconds or minutes.

Battery Energy Storage Systems



Challenges

Transmission and 
Distribution Level

• Network investment 
deferral

• Black-start

• Voltage support

• Congestion relief

• By reducing peak load growth, BESS defer the transmission upgrade 

investments.

• BESS discharges when the load is over the current transmission line capacity.

• BESS can be used to provide enough incremental capacity to defer the need 
for a large lump investment in transmission equipment.

• BESS provides active reserve of power to energize transmission and 

distribution lines.

• BESS also can proved the electricity for the power plant to perform start-up 

operations.  

• BESS provides reactive support to the grid with the change of its power 
factor to compensate the reactive power flows on the grid.

• BESS would be installed at locations where are electrically downstream from 
the congested portion of the transmission system.

• Energy would be stored when there is no transmission congestion, and it 
would be discharged (during peak demand periods) to reduce peak 
transmission capacity requirements.

Battery Energy Storage Systems
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End-user Level

• Power quality and 
reliability

• Demand side energy 
management

• BESS can effectively support customer loads when there is a total loss 

of power from the source utility. 

• This support requires the storage system and customer loads to island 

during the utility outage and resynchronize with the utility when 

power is restored.

• BESS can be used to reduce the overall costs for electric service by 

reducing the demand during peak periods. 

• Through load shifting with BESS, customer can reduce their demand 

charges and avoid demand charge penalties.

Battery Energy Storage Systems
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Voltage Characteristics（LV&MV）

Parameter Supply voltage characteristics (According

to EN 50160)

Voltage magnitude 
variations

LV: ±10% of the Nominal voltage of the system
MV: ±10% of the Nominal voltage of the system

Rapid voltage 
changes

LV: 5% (normal) and 10% (infrequently)
MV: 4% (normal) and 6% (infrequently)

Supply voltage dips Majority: duration < 1s, depth < 60%
Locally limited dips caused by load switching on:
LV: 10 – 50 %
MV: 10 – 15%

Short interruptions 
of supply voltage

LV & MV: Up to 3 minutes

Supply voltage 
unbalance

LV & MV: Up to 2%. (3% in some locations)
Illustration of a voltage dip and a short supply interruption

Battery Energy Storage Systems
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Frequency Grid Code for BESS
• The grid-connected BESSs can be identified as generating

facilities when they operate at the electricity generation
mode.

• The BESS is required to provide a certain level of power
output in the case of frequency deviations. The nominal
frequency interval is 49.5 – 50.5 Hz and the critical
frequency interval is 47.0 – 52.0 Hz.

• For onshore synchronous generating units (when
supplying rated MW), they must be capable of
continuous operation at any point between the limits of
0.85 power factor lagging and 0.95 power factor leading
at the generating unit terminals.

• For onshore non-synchronous generating units must be
capable of maintaining zero transfer of reactive power
at the onshore grid entry point at all active power output
levels under steady state voltage conditions. The steady
state tolerance on reactive power transfer to and from
the network should be no greater than 5% of rated MW.

Frequency 
ranges (Hz) Operation period requirements

51.5 – 52.0 At least 15 minutes is required for 
each time. 

51.0 – 51.5 At least 90 minutes is required for 
each time.

49.0 – 51.0 Continuous operation is required.

47.5 – 49.0 At least 90 minutes is required for 
each time.

47.0 – 47.5 At least 20 seconds is required for 
each time.  

The requirements of generating units regarding 
the GB grid frequency variations [4] 

[4] Transmission System Operator for UK, Grid Code, Issue 5, Revision 21, UK Nationalgrid. 2017. Available at: 

https://www.nationalgrideso.com/document/34091/download

Battery Energy Storage Systems
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Frequency Control Strategies
• Mandatory Frequency Response: an automatic

change in active power output in response to a
frequency change. The service is needed to
maintain the frequency within statutory (49.5 –
50.5Hz) and operational limits (49.8 – 50.2 Hz).

• Primary Response: Provision of additional active
power within 10 seconds after an event and can
be sustained for a further 20 seconds.

• Secondary Response: Provision of additional
active power within 30 seconds after an event
and can be sustained for a further 30 minutes.

• High Frequency Response: the reduction in
active power within 10 seconds after an event
and sustained indefinitely.

Battery Energy Storage Systems
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Challenges

• Safety Issues:

For safe and secure operations, various factors,
such as life cycle, operating temperature, short-
circuit problem, overcharging, over-discharging
characteristics must be addressed efficiently.

• BESS size determination: 

Sizing of the energy storage system is critical in
microgrid design. A number of factors should be
considered when determining the size of BESS
for microgrids.

• Energy Management System:

To design an efficient Energy Management
System, the minimisation of the overall system
loss and the control of SOC can play a vital role in
optimising the efficiency and keeping the reserve
for future demand.

Battery swelling caused by overcharging

Lithium-ion battery thermal runaway.

Battery Energy Storage Systems
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Battery safety issues

Battery Energy Storage Systems

Safety issues caused by undesirable chemical reactions:

• At high-temperature and high-voltage conditions, the electrochemical reactions inside the cell
become more complex, including decomposition of the solid electrolyte interface (SEI) film, oxygen
release at the cathode side, and additional electrolyte/electrode parasitic side reactions.

• SEI film decomposition and interfacial reactions initially accelerate the temperature increase,
thereby increasing risks of oxygen release from the active cathode materials. These reactions
eventually lead to lithium-ion battery thermal runaway, which causes battery rupture and explosion
due to the reaction of hot flammable gases from the battery with the ambient oxygen.

Safety issues caused by mechanical abuse:

• Due to the high energy density of lithium-ion batteries, local damage caused by external influences
will release a significant amount of heat, which can easily cause thermal runaway.

• The distribution of internal stresses in certain areas of the battery could cause internal short circuits.

• Cell damage by squeezing deformation can tear the separator, causing the electrodes to come into
direct contact.
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Battery safety issues

Battery Energy Storage Systems

Safety issues induced by electrical abuse:

• Overcharge is the most dangerous types of electrical abuse and one of the most frequently
observed reasons for lithium-ion battery safety accidents.

• Overcharge can cause electrolyte decomposition, heat and gas generation during the side reactions.

• Charging rate is often the most significant factor affecting overcharge, as the overcharging current
density determines the rate of heat generation by the battery reactions: the higher the current, the
more heat is generated per unit time, increasing the risks of uncontrollable battery behaviour.

Safety issues caused by thermal abuse:

• In thermal abuse situations, a battery experiences thermal shock, or its local temperature is too high.

• The combustibles in the vicinity may ignite if they are close to or in contact with a hot battery.

• The heat dissipation of a cell depends on its external surface area and geometry. Heat dissipation by
radiation helps to alleviate some of the generated heat, but some of the heat remains stored inside
the battery. If this heat continues to accumulate instead of being dissipated, exothermic side
reactions start to occur, further concentrating thermal stress, causes thermal runaway.
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Battery safety issues

Battery Energy Storage Systems

Safety issues caused 
by undesirable 
chemical reactions

Safety issues caused 
by mechanical abuse

Safety issues induced 
by electrical abuse

Safety issues caused 
by thermal abuse

Thermal Runway

• Thermal runaway is the most detrimental lithium-ion battery safety issue.

• The origins of thermal runaway including side reactions of electrolyte,
cathode, anode, and interfacial reactions at the surface of electrodes
and Li plating.

• The temperature of a lithium-ion cell is determined by the heat balance
between the amount of heat generated and that dissipated by the cell.
When a cell is heated above a certain temperature (usually above 130–
150 ◦C), exothermic chemical reactions between the electrodes and
electrolyte set in will raise its internal temperature.

• If the heat generated is more than what can be dissipated, the
exothermic processes would proceed under adiabatic-like conditions and
the cell’s temperature will increase rapidly.

• The rising temperature will further accelerate the chemical reactions,
rather than the desired galvanic reactions, causing even more heat to be
produced, eventually resulting in thermal runaway.
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Depth of discharge 
(DoD)

Understanding the 
load profile

Other factors

Understanding the 
renewable 

generation profile

Maximal charging 
& discharging rates

Sizing of 

the BESS

Battery energy storage system size determination
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Understanding the 
renewable 

generation profile

Understanding the 
load profile

The load profile is variable in days and seasons. 
Hence it is necessary to calculate or collect the load 
demand data and analyse the distributions and 
boundaries of the load profile across different days 
and seasons, and calculate the mean and variance of 
the load profile during a day.

The uncertainties and intermittence nature of the 
renewable generation impose challenges on 
estimation of generation profile. Using the procedure 
for load profile investigation, it is still possible to 
roughly estimate the generation profiles across 
different days and sessions.
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This determines the capacity of BESS such that the 
battery bank will not exceed the maximum 
continuous charge and discharge rate for specific 
applications to prevent damage and potential safety 
hazard and dramatic  degradation of battery life.

DoD decides the usable energy storage. If the DoD 
exceeds the threshold, the battery life will be 
significantly reduced. 

Maximal charging 
& discharging rates

Depth of discharge 
(DoD)

Other factors
e.g. battery operating temperature, duty cycle, 
battery aging, providing network services, etc.
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Sizing criteria – Financial Indicators

Overall costs and benefits of the BESS (over the operational lifetime):

• Determine the overall costs of a BESS on a lifetime basis, including levelized upfront 
capital costs, annual/daily operation and maintenance costs, etc.   

• The indicator to be optimized can be the Net Present Value (NPV) of the system (which 
should be maximized) or the levelized cost of electricity (LCOE) on annual/daily basis 
(which should be minimized). 

Maximizing the market benefit of the microgrid:

• The total benefits in grid-connected mode are maximized and the total costs associated 
with being in islanded mode are minimized. 

• The total costs of microgrids include the levelized operating costs from BESS and other 
running components. 

• The total benefits are calculated through the difference between the benefits from selling 
electricity and the total operating costs. 
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Sizing criteria – Technical indicators

• In the optimization, technical indicators can be quantified by binary variables, i.e. do 
they meet or not meet the requirements, or as a specific value goal.  

• Technical indicators generally act as constraints within which the financial indicators 
need to be optimized. 

• Some of the most considered battery constraints include: 

➢ Power limits: ൝
0 ≤ 𝑃𝑐(𝑡) ≤ 𝑃𝑐,𝑚𝑎𝑥

0 ≤ 𝑃𝑑(𝑡) ≤ 𝑃𝑑,𝑚𝑎𝑥

➢ Energy limits : 𝐸𝑚𝑖𝑛 ≤ 𝐸(𝑡) ≤ 𝐸𝑚𝑎𝑥

➢ SOC limits: 𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶(𝑡) ≤ 𝑆𝑂𝐶𝑚𝑎𝑥
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Example of battery storage requirement calculation – system modelling 

• Wind power:

𝑃𝑤 =

0 𝑣 ≤ 𝑣𝑐 𝑜𝑟 𝑣 ≥ 𝑣𝑓

𝑝𝑟 ∗
𝑣𝑘 − 𝑣𝑐

𝑘

𝑣𝑟
𝑘 − 𝑣𝑐

𝑘 𝑣𝑐 ≤ 𝑣 ≤ 𝑣𝑟

𝑝𝑟 𝑣𝑟 ≤ 𝑣 ≤ 𝑣𝑓

• Solar power:
𝑝𝑠 = 𝜂𝑆𝐼 1 − 0.005 𝑡0 − 25

𝑀𝐴𝑃𝐸 =
1

𝑁
෍

𝑖=1

𝑁
𝐼𝑓
𝑖 − 𝐼𝑎

𝑖

𝐼𝑎
𝑖

∗ 100%

where 𝑣 is wind speed, 𝑣𝑐 is the cut-in wind speed, 𝑣𝑟 is the rated wind speed, 𝑣𝑓 is the cut-off wind 

speed. 𝑝𝑟 is the rated electrical power. 𝑃𝑤 is the wind power generation output.   

where 𝑝𝑠 is the solar photovoltaic power output,  𝜂 is the conversion efficiency of the solar cell array (%), 
𝑆 is the array area (m2), 𝐼 is the solar radiation (kW/m2) and 𝑡0 is the outside air temperature (oC). 𝐼𝑓 and 

𝐼𝑎 are the forecasted and actual radiation, respectively. 𝑁 is the data size. 𝑀𝐴𝑃𝐸 is the mean absolute 
percentage error that used to express the difference between the actual and forecasted radiation. 
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Example of battery storage requirement calculation – system modelling 

• Microturbines and Fuel Cells:
𝐶 𝑃 = 𝑎 + 𝑏𝑃

where 𝐶(𝑃) is total cost of microturbines (installation cost and fuel cost), 𝑎 and 𝑏 are the cost coefficients.   

• Battery Energy Storage System:

𝐶 𝑡 + 1 = ቐ
𝐶 𝑡 − Δ𝑡 𝑃𝑡

𝐸,𝑑/𝜂𝑑 𝑓𝑜𝑟 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

𝐶 𝑡 + Δ𝑡 𝑃𝑡
𝐸,𝑐𝜂𝑐 𝑓𝑜𝑟 𝑐ℎ𝑎𝑟𝑔𝑒

where 𝐶(𝑡) is the energy stored in the battery bank at time 𝑡. 𝑃𝑡
𝐸,𝑑 is the power discharged by the battery bank, 𝑃𝑡

𝐸,𝑐 is 
the power charged by the grid to the battery bank. Δ𝑡 is the duration time of each interval. 𝜂𝑑 and 𝜂𝑐 are the 
discharge efficiency and charge efficiency, respectively. The battery bank should also satisfy the following constraints:  

Power limits:  ቐ
0 ≤ 𝑃𝑡

𝐸,𝑑 ≤ 𝑃𝐸
𝑑,𝑚𝑎𝑥

0 ≤ 𝑃𝑡
𝐸,𝑐 ≤ 𝑃𝐸

𝑐,𝑚𝑎𝑥 Stored energy limits:  𝐶𝑚𝑖𝑛 ≤ 𝐶(𝑡) ≤ 𝐶𝑚𝑎𝑥
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Example of battery storage requirement calculation – system modelling 

• The cost of BESS includes the one-time cost and the annual maintenance cost. 

• The on-time cost (includes the purchase of batteries and their installation) is a variable cost 
proportional to the size of BESS. The annualized on-time BESS cost (AOTC) can be 
determined as

𝐴𝑂𝑇𝐶 =
𝑟(1 + 𝑟)𝑙

(1 + 𝑟)𝑙−1
∗ 𝐹𝐶 ∗ 𝐶𝐸

where F𝐶 is the one-time BESS cost, 𝐶𝐸 is the size of BESS. 𝑙 is the lifetime of the BESS in years, 𝑟 is the interest rate 
for financing the installed BESS. 

• The total cost of BESS can be obtained by adding AOTC and the annual maintenance cost (MC) 
together. The total cost per day (TCPD) of the BESS can be determined as  

𝑇𝐶𝑃𝐷 =
1

365
(𝐴𝑂𝑇𝐶 + 𝐶𝐸 ∗ 𝑀𝐶)
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Example of battery storage requirement calculation – Islanded Microgrids

Minimum size for BESS needed by the islanded microgrid:

𝐸𝑑𝑖𝑠
𝑚𝑖𝑛 = න

0

𝑇

𝑃𝑙𝑜𝑎𝑑
𝑡 − 𝑃𝑔𝑟𝑖𝑑

𝑡,𝑚𝑥 𝛿𝑡, 𝑃𝑙𝑜𝑎𝑑
𝑡 ≥ 𝑃𝑔𝑟𝑖𝑑

𝑡,𝑚𝑎𝑥

𝐸𝑐ℎ
𝑚𝑖𝑛 = න

0

𝑇

𝑃𝑔𝑟𝑖𝑑
𝑡,𝑚𝑖𝑛 − 𝑃𝑙𝑜𝑎𝑑

𝑡 𝛿𝑡, 𝑃𝑔𝑟𝑖𝑑
𝑡,𝑚𝑖𝑛 ≥ 𝑃𝑙𝑜𝑎𝑑

𝑡

𝐸𝐵𝐸𝑆𝑆
𝑚𝑖𝑛 = max(

𝐸𝑑𝑖𝑠
𝑚𝑖𝑛

𝜂𝑑
, 𝜂𝑐𝐸𝑐ℎ

𝑚𝑖𝑛)

Where T is the end of  the time period set, 𝛿𝑡 is the time interval. 𝑃𝑙𝑜𝑎𝑑
𝑡 is the system load at time t, 

𝑃𝑔𝑟𝑖𝑑
𝑡,𝑚𝑎𝑥 is the maximum power supplied by all the generators, 𝑃𝑔𝑟𝑖𝑑

𝑡,𝑚𝑖𝑛 is the minimum power supplied 

by the renewable energy sources. 𝐸𝑑𝑖𝑠
𝑚𝑖𝑛 is the minimum energy supplied by the BESS and 𝐸𝑐ℎ

𝑚𝑖𝑛 is the 

minimum energy charged to the BESS. 𝐸𝐵𝐸𝑆𝑆
𝑚𝑖𝑛 is the minimum size needed by the islanded microgrid.         
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Example of battery storage requirement calculation – Islanded Microgrids

Minimize the total unit commitment schedule cost (TUCC):

𝑀𝑖𝑛:෍

𝑡

෍

𝑛∈𝐶𝐺

𝑟𝑛𝑅𝑡𝑛 + 𝑑𝑛𝑆𝑈𝑡𝑛 + 𝑈𝑡𝑛 𝑎𝑛 + 𝑏𝑛𝑃𝑡𝑛 +෍

𝑡

෍

𝑛∈𝑊𝐺

(𝑈𝑡𝑛𝑃𝑡𝑛𝑐𝑤) +෍

𝑡

෍

𝑛∈𝑃𝐺

(𝑈𝑡𝑛𝑃𝑡𝑛𝑐𝑝𝑣)

where CG is a set of dispatchable distributed generators. WG and PG are the sets of wind energy and 
PV renewable resources, respectively. n and t are subscripts indicating generator/energy resource 
and hour index, respectively. 𝑎𝑛 and 𝑏𝑛 are the cost coefficients of microturbines and fuel cells. 𝑈𝑡𝑛
and 𝑆𝑈𝑡𝑛 are vectors of binary integers representing unit status and start up status. 𝑟𝑛 and 𝑑𝑛 are the 
reserve cost and start up cost respectively. 𝑃𝑡𝑛 is the generator output power, 𝑅𝑡𝑛 is the spinning 
reserve of dispatchable distributed generators. 𝑐𝑤 and 𝑐𝑝𝑣 are wind and PV energy cost, respectively.           
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Example of battery storage requirement calculation – Grid-Connected Microgrids

• Profit = Revenue – Expenses

• Revenue: the energy supplied to the consumers multiplied by the electrical price.

• Expenses: the total unit commitment cost (TUCC). 

• Maximize the market benefit (MB):

𝑀𝑎𝑥: 𝑀𝐵 = ෍

𝑡

𝑀𝑃𝑡 ෍

𝑛∈𝐶𝐺

𝑃𝑡𝑛 − 𝑇𝑈𝐶𝐶

where 𝑀𝑃𝑡 is the market price, TUCC includes the dispatchable generator costs (start-up cost, online 
spinning reserve cost, and generating energy cost) and renewable energy cost (wind and PV energy 
cost). 
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Example of battery storage requirement calculation – Optimization 

Considering the BESS’ total cost per day (TCPD) for both islanded and grid-connected
microgrids, the objective function will change to minimizing the total cost (TC) for islanded
microgrid and maximizing the total benefit (TB) for grid –connected microgrid.

ቊ
𝑀𝑖𝑛: 𝑇𝐶 = 𝑇𝐶𝑃𝐷 + 𝑇𝑈𝐶𝐶
𝑀𝑎𝑥: 𝑇𝐵 = 𝑀𝐵 − 𝑇𝐶𝑃𝐷

Thus, the battery energy storage size requirement can be determined via different 
optimization techniques. 
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Case Study - Alderney Island:

• Alderney Island is the third larges of the Channel Islands.

• Permanent resident population ≈ 2000 residents.

• Electric power is centrally generated by diesel generators (eight
450kW generators).

• Renewable energy sources include wind energy and solar energy.

Goal: 
✓ Utilize BESS to absorb the 

excess power from renewable 
energy sources, and meet the 
load demand.

✓ Minimize the total cost (BESS 
investment cost + generator 
operating cost).

✓ Determine the size of the BESS. 
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Case Study – Technical requirements:

• When the power generated by the renewable energy sources is greater
than the load demand, the BESS operates in the charging mode to absorb
all the excess power.

• If 𝑃𝑊 𝑡 + 𝑃𝑠 𝑡 > 𝑃𝐿(𝑡) :

൝
𝑃𝑤(𝑡) + 𝑃𝑠(𝑡) = 𝑃𝑏,𝑐(𝑡) + 𝑃𝐿(𝑡)

𝐶 𝑡 + 1 = 𝐶 𝑡 + Δ𝑡 𝑃𝑏,𝑐𝜂𝑐

• When the power generated by the renewable energy sources is less than
the load demand the BESS operates in the discharging mode (with the
diesel generators) to meet the load demand.

• If 𝑃𝑤 𝑡 + 𝑃𝑠 𝑡 < 𝑃𝐿 𝑡 :

൝
𝑃𝑤 𝑡 + 𝑃𝑠 𝑡 + 𝑃𝑔 𝑡 + 𝑃𝑏,𝑑(𝑡) = 𝑃𝐿(𝑡)

𝐶 𝑡 + 1 = 𝐶 𝑡 − Δ𝑡 𝑃𝑏,𝑑/𝜂𝑑

• The BESS must NEVER be over-charged or over-discharged:

0 ≤ 𝐶(𝑡) ≤ 𝐶𝐸

• 𝑃𝑤: wind power. 
• 𝑃𝑠: solar power.  
• 𝑃𝑔: Power generated by 

the diesel generators. 
• 𝑃𝐿: Load demand. 
• 𝑃𝑏,𝑐 : BESS charging power. 
• 𝑃𝑏,𝑑: BESS discharging 

power. 
• C(t): energy stored in the 

BESS at time t. 
• Δ𝑡: Time duration, Δ𝑡 = 1 

hour  in this case study. 
• 𝜂𝑐 : BESS charge efficiency, 

𝜂𝑐 is assumed as 1 in this 
case study. 

• 𝜂𝑑: BESS discharge 
efficiency, 𝜂𝑑 is assumed 
as 1 in this case study. 

• CE: the battery size needs 
to be determined. 
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Case Study – Financial requirements:
Parameters: 

• BESS investment cost  (IC) 
=  0.98 M£ / MWh 

• The life time of the BESS 
(L) is assumed as 15 years. 

• The operation costs of 
the BESS is assumed as 0. 

• The interest rate (r) is 
assumed as 0.053. 

• The generators operating 
cost (GOC): 196.2 £ 
/MWh. 

• The line resistance and 
reactance are assumed as 
0 in this case study. 

Daily total Cost (DTC) = BESS daily levelized investment cost + daily diesel 
generators operating cost.  

Daily levelized investment cost (DLIC) of the BESS:

𝐷𝐿𝐼𝐶 =
1

365
∗
𝑟(1 + 𝑟)𝐿

(1 + 𝑟)𝐿−1
∗ 𝐼𝐶 ∗ 𝐶𝐸

Daily diesel generators operating cost (DGOC):

𝐷𝐺𝑂𝐶 = න
𝑡=0

24

𝑃𝑔 𝑡 ∗ 𝐺𝑂𝐶

To minimize the daily total cost,

𝑀𝑖𝑛: 𝐷𝑇𝐶 = 𝐷𝐿𝐼𝐶 + 𝐷𝐺𝑂𝐶

Various solvers can be used to solve this linear programming problem, e.g.,
YALMIP and linprog toolbox in MATLAB.
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Case Study – Results analysis:

The optimal battery size in this case study is determined as 0.59 MWh.  
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Case Study Appendix – Power profile:

Time 
(h)

Load demand 
(MW)

Solar power 
(MW)

Wind power 
(MW)

Time 
(h)

Load demand 
(MW)

Solar power 
(MW)

Wind power 
(MW)

0 0.5890 0.0000 0.1462 13 0.9350 0.4545 0.8055 
1 0.4860 0.0000 0.3488 14 0.9240 0.3854 0.6705 
2 0.4390 0.0000 0.5130 15 1.0180 0.3181 0.5422 
3 0.4580 0.0000 0.5242 16 1.0910 0.2200 0.5040 
4 0.4910 0.0000 0.4388 17 1.0990 0.1109 0.4050 

5 0.5520 0.0000 0.4680 18 1.1600 0.0073 0.2700 
6 0.5980 0.0000 0.5805 19 1.0840 0.0000 0.2587 

7 0.7700 0.0000 0.6345 20 0.9940 0.0000 0.3240 
8 0.9900 0.0000 0.6637 21 0.8860 0.0000 0.4320 
9 1.0410 0.0000 0.7515 22 0.7630 0.0000 0.5985 

10 1.0950 0.0582 0.7673 23 0.6130 0.0000 0.6187 
11 1.1230 0.2109 0.8910 24 0.5390 0.0000 0.6908 
12 1.0670 0.3418 0.8618 
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Battery SOC estimation

• Coulomb counting method

𝑆𝑂𝐶 𝑘 = 𝑆𝑂𝐶 𝑘 − 1 +
𝑇𝑠
𝐶𝑛

∗ 𝑖(𝑘 − 1)

• OCV-based method

OCV-SOC one-to-one relationship.

Requirement of long relaxation time.

Hysteresis effect

• Electrochemical models

Adapts physical laws.

Complex

Difficult for real-time applications.

• Black-box models

Easy to implement.

Requires a large amount of data.

• Equivalent Circuit Model:

First-order RC model

𝑉𝑡,𝑘 = 𝑉𝑜𝑐,𝑘 + 𝐼𝑘 ∗ 𝑅0 − 𝑈𝑝,𝑘

𝑈𝑝,𝑘+1 = −
1

𝑈𝑝𝑅𝑝
𝑈𝑝,𝑘 −

1

𝐶𝑝
𝐼𝑘

Second-order RC model 

𝑉𝑡,𝑘 = 𝑉𝑜𝑐,𝑘 + 𝐼𝑘 ∗ 𝑅0 − 𝑈𝑝𝑎,𝑘 − 𝑈𝑝𝑐,𝑘

𝑈𝑝𝑎,𝑘+1 = −
1

𝑈𝑝𝑎𝑅𝑝𝑎
𝑈𝑝𝑎,𝑘 −

1

𝐶𝑝𝑎
𝐼𝑘

𝑈𝑝𝑐,𝑘+1 = −
1

𝑈𝑝𝑐𝑅𝑝𝑐
𝑈𝑝𝑐,𝑘 −

1

𝐶𝑝
𝐼𝑘

First-order RC model

Second-order RC model
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Battery SOC estimation

1. A non-linear complementary model is applied to capture the hysteresis effect.

2. An auto-regression (AR) model is adopted to reproduce the battery terminal behavior

Hysteresis effect of the LiFePO4 cell Battery model with AR (m, n) instead of 
RC networks

Hysteresis Model:

𝑉ℎ 𝑘 + 1 = exp − 𝛾 ∗ 𝑖 𝑘 ∗ 𝑉ℎ 𝑘 + 1 − exp − 𝛾 ∗ 𝑖 𝑘 ∗ 𝑠𝑖𝑔𝑛 𝑖 𝑘 ∗ 𝑀ℎ

AR model to capture the relaxation effect: 

𝑉𝑟(𝑘) = σ𝑖=1
𝑚 𝑎𝑖 ∗ 𝑉𝑟 𝑘 − 𝑖 + σ𝑖=1

𝑛 𝑏𝑖 ∗ 𝑖 𝑘 − 𝑖 + 𝑒(𝑡)
𝑉ℎ 𝑘 : The hysteresis voltage

𝑖 𝑘 : The current

𝛾: The coefficient 

𝑀ℎ:  The maximum hysteresis voltage

𝜖:  a small threshold value

𝑉𝑟: The battery relaxation voltage

𝑒 𝑘 : The error
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Battery SOC estimation

𝑉 𝑘 : The terminal voltage

𝑅𝑖: The internal resistance

𝑁: The number of data samples. 

Model identification: 

𝑉𝑟 𝑘 = 𝑂𝐶𝑉 𝑆𝑂𝐶 𝑘 − 𝑉ℎ 𝑘 − 𝑅𝑖 ∗ 𝑖(𝑘)

L𝑒𝑡: 𝑣𝑎= 𝑂𝐶𝑉 𝑆𝑂𝐶 𝑘 − 𝑉ℎ 𝑘 − 𝑣 𝑘 ,

𝑣𝑎 =෍

𝑖=1

𝑚

𝑎𝑖 ∗ 𝑘 − 𝑖 + 𝑅𝑖 ∗ 𝑖 𝑘 +෍

𝑖=1

𝑛

𝑏𝑖 − 𝑎𝑖 ∗ 𝑅𝑖 ∗ 𝑖 𝑘 − 𝑖 + 𝑒(𝑡)

The objective function that is to be optimized is: 

SSE = σi=1
N e2(t)

The model parameters that need to be optimized are:

θ = a, b, γ,Mh, Ri

where a = a1, a2, … am and b = [b1, b2, … bn]
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Battery SOC estimation

Results: 

Modelling results using HPPC data Modelling validation results using FUDS test data 

RMS of SOC estimation error

With 20% initial SOC error 1.63%

Without initial SOC error 1.48%

Real-time SOC estimation result



ChallengesBattery Energy Storage Systems

Battery internal temperature estimation

Battery electric circuit model: 

𝑂𝐶𝑉 = 𝑓(𝑆𝑂𝐶)

𝑆𝑂𝐶 𝑘 = 𝑆𝑂𝐶 𝑘 − 1 + 𝑖 𝑘 − 1 ∗
𝑇𝑠

3600 ∗ 𝐶𝑛

Let 𝑎𝑙 = exp −
𝑇𝑠

𝑅𝑙𝐶𝑙
, 𝑏𝑙 = 𝑅𝑙 ∗ 1 − 𝑎𝑙 , 𝑙 = 1, 2.

𝑣𝑙 𝑘 = 𝑎𝑙 ∗ 𝑣𝑙 𝑘 − 1 + 𝑏𝑙 ∗ 𝑖(𝑘 − 1)

Recall the hysteresis dynamic model: 

𝑉ℎ 𝑘 = exp − 𝛾 ∗ 𝑖 𝑘 − 1 ∗ 𝑉ℎ 𝑘 − 1 + 1 − exp − 𝛾 ∗ 𝑖 𝑘 − 1 ∗ 𝑠𝑖𝑔𝑛 𝑖 𝑘 − 1 ∗ 𝑀ℎ

Battery electric sub-model:

𝑥𝑒(𝑘) = 𝐴𝑒 𝑘 − 1 ∗ 𝑥𝑒 𝑘 − 1 + 𝐵𝑒(𝑘 − 1), 𝑥𝑒 𝑘 = 𝑆𝑂𝐶 𝑘 , 𝑣1 𝑘 , 𝑣2 𝑘 , 𝑉ℎ(𝑘)
𝑇

𝑣 = 𝑂𝐶𝑉 + 𝑉ℎ + 𝑅𝑖 ∗ 𝑖 + 𝑣1 + 𝑣2
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Battery internal temperature estimation

Battery thermal model:

Simplified heat generation model:
𝑄1= 𝑅𝑖 ∗ 𝑖

2

𝑄2= 𝑖 ∗ 𝑣 − 𝑂𝐶𝑉

𝑄3= 𝑖 ∗ 𝑣 − 𝑂𝐶𝑉 + 𝑖 ∗ 𝑇𝑖𝑛 ∗
𝑑𝑂𝐶𝑉

𝑑𝑇𝑖𝑛

Simplified heat transfer model:

𝐶𝑖𝑛∗
𝑑𝑇𝑖𝑛
𝑑𝑡

= 𝑄𝑗 − 𝑘1 ∗ 𝑇𝑖𝑛 − 𝑇𝑠ℎ , 𝑗 ∈ {1, 2, 3}

𝐶𝑠ℎ∗
𝑑𝑇𝑠ℎ
𝑑𝑡

= 𝑘1 ∗ 𝑇𝑖𝑛 − 𝑇𝑠ℎ − 𝑘2 ∗ (𝑇𝑠ℎ − 𝑇𝑎𝑚𝑏)

Battery thermal sub-model:
𝑥𝑡 𝑘 = 𝐴𝑡 𝑘 − 1 ∗ 𝑥𝑡 𝑘 − 1 + 𝐵𝑡 𝑘 − 1

𝑤ℎ𝑒𝑟𝑒, 𝑥𝑡 𝑘 = 𝑇𝑖𝑛(𝑘), 𝑇𝑠ℎ
𝑇

𝑄1,2,3: heat generation.

𝑅𝑖 : battery internal resistance.

𝑖: current.

𝑣: battery terminal voltage

𝑇𝑖𝑛: battery internal temperature.

𝑇𝑠ℎ: battery shell temperature.

𝑇𝑎𝑏𝑚: the ambient temperature.

𝐶𝑖𝑛: battery internal thermal capacity.

𝐶𝑠ℎ: battery shell thermal capacity.

𝑘1: the heat conduction coefficient between
the battery internal and the shell.

𝑘2: the heat conduction coefficient between
the battery shell and the ambience.
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Battery internal temperature estimation

Coupled thermoelectric model: 

𝑥 𝑘 = 𝐴(𝑘 − 1) ∗ 𝑥 𝑘 − 1 + 𝐵(𝑘 − 1)

𝑣 𝑘 = 𝑓𝑜𝑐𝑣 𝑆𝑂𝐶 𝑘 + 𝑉ℎ 𝑘 + 𝑣1 𝑘 + 𝑣2 𝑘 + 𝑅𝑖 ∗ 𝑖(𝑘)

where: 

𝑥 𝑘 = 𝑥𝑒(𝑘), 𝑥𝑡(𝑘)
𝑇

𝐴 𝑘 − 1 = 𝑏𝑙𝑘𝑑𝑖𝑎𝑔 (𝐴𝑒 𝑘 − 1 ,𝐴𝑡(𝑘 − 1))

𝐵 𝑘 − 1 = 𝐵𝑒(𝑘 − 1), 𝐵𝑡(𝑘 − 1) 𝑇

Coupled Battery 
Thermoelectric 

Model

Battery electric 
circuit sub-model

Battery thermal 
sub-model
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Battery internal temperature estimation

Modelling results: 

Thermal modelling results

Thermal sub-model identification results

Parameters Value

𝐶𝑖𝑛 288.77

𝐶𝑠ℎ 30.8

𝑘1 1.7312

𝑘2 0.3205

Thermal modelling results

Item Error

T𝑖𝑛 Max error 1.51

Tin RMSE 0.695

Tsh Max error 2.31

Tsh RMSE 0.714



ChallengesBattery Energy Storage Systems

Battery SOH Estimation

Comparison of Several Popular SOH Estimation Methods

Methods Description Advantages Disadvantages

Model-free  
(Physical Measurement)

𝑆𝑂𝐻 =
𝐶𝑎𝑐𝑡𝑢𝑎𝑙
𝐶𝑛𝑜𝑚𝑖𝑎𝑙

× 100%

𝑆𝑂𝐻 =
𝑅𝑎𝑐𝑡𝑢𝑎𝑙
𝑅𝑛𝑜𝑚𝑖𝑛𝑎𝑙

× 100%

• Easy to implement
• Excellent precision

• Standard battery capacity 
and internal resistance 
tests are required. 

• Time consuming.

Electrochemical methods Fitting the parameters of the physical 
equations. 

• High accuracy and reliability • Complex
• Difficult for real-time 

application

ECM based methods Using electric components to represent 
battery behaviour, calculate SOH 
according to other battery internal 
states, e.g. SOC. 

• Easy for on-board application. 
• No sophisticated experiments are 

required. 

• Requires filters to 
improve the  adaptability

Semi-empirical based models Modelling each aging factor according 
to physical laws and experience 
knowledge. 

• High accuracy
• High prediction ability.

• Require specific designed 
experiments. 

• Poor adaptability. 

Data mining methods Discovering the ageing patterns in large 
data sets.

• Do not require priori knowledge of 
ageing mechanisms. 

• Input data can be easily obtained. 

• Requires a large amount 
of data. 



Battery SOH Estimation

Battery capacity 

• Accurate capacity estimation provides insights into the SOH, 

thus plays a critical role in BMS, ensuring safe and reliable 

battery operation, preventing incipient failures and 

catastrophic hazards, and prolonging the battery service life.

𝑄𝑡
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𝑺𝑶𝑯 =
𝑸𝒕

𝑸𝒓𝒂𝒕𝒆𝒅
× 𝟏𝟎𝟎%

𝑸𝒓𝒂𝒕𝒆𝒅 is the rated capacity of a battery,

and 𝑸𝒕 is the battery’s maximum available

capacity at current cycle t.

Battery Energy Storage Systems
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➢ CNN is a neural network with convolution operation instead of matrix multiplication in at least one of
the layers. A convolutional layer has several filters (also called kernel, weight matrix or feature
detector) that does convolutional operation.

➢ Compared with traditional deep neural networks (DNNs), the number of parameters (weights) of a
CNN that are required to maintain the accuracy is significantly reduced, due to three main concepts
being introduced to the CNNs:

✓ Sparse Connectivity

✓ Shared Weights

✓ Pooling



❑ Time Series Signal Transformation

• When apply CNN for battery capacity estimation, a 

time series-to-image transformation process is required

• As illustrated in the figure, 𝑀 data chunks with the size 

of 𝑛 × 3 are segmented from a cycle which contains 𝐿

data points in total

𝑀 = 𝑓𝑙𝑜𝑜𝑟
𝐿 − 𝑛

𝑛 − 𝑐
+ 1

Each data chunk refers to a partial charging segment, 3 is 

the number of variables (current, voltage, surface 

temperature), and 𝑛 is the number of data points. Two 

adjacent data chunks have 𝑐 overlapping data points. The 

function floor(.) gives the greatest integer less than or 

equal to the input parameter.

Battery Energy Storage Systems



❑ CNN Model Construction for Battery Capacity Estimation

• The CNN architecture for capacity estimation consists of two alternating convolutional and 

pooling layers, followed by two convolutional layers, and finally a flatten layer and two fully 

connected layers are utilized.

Battery Energy Storage Systems



❑ Experiment and Analysis

• Battery degradation datasets

The proposed CNN-based capacity estimation method is applied to two battery 

experimental datasets.

Dataset 124 commercial cells Oxford Battery
Degradation Dataset

Nominal capacity 1.1 Ah 0.74 Ah

Ambient temperature 30 ℃ 40 ℃

Number of cells used in 
analysis

16 8

Cycling Cells cycled with similar 
but different regime

All cells cycled with same 
regime

Battery Energy Storage Systems



❑ Limitations

• CNNs typically require large-scale annotated training datasets to achieve high 

estimation accuracy, while gathering such long-term battery cycling data is often 

time-consuming and costly.

• Redundant parameters and connections exist in the CNN model.

❑ Solutions

• Transfer learning (TL) – improve the accuracy of the CNN model when apply it on 

a relatively small battery degradation dataset, do not need to build every model 

from scratch for different types of batteries.

• Network pruning – select the significant neurons and connections, remove those 

insignificant ones

Battery Energy Storage Systems



❑ Transfer learning (TL)

• Neural Network Layers: General to Specific

Earlier layers: extract low-level general features

Later layers: extract high-level specific features

• Process

➢ Pre-train the CNN model on the source dataset

➢ Transfer the knowledge learnt from the source dataset to the target dataset

Identify which layers to keep (freeze) and which layers to fine-tune (unfreeze)

➢ Fine-tune the unfreeze layers of the model on target dataset with smaller 

learning rate

• Which layers to fine-tune?

➢ Depends on the size of the target dataset (small or big), and its similarity to 

the source dataset 

Battery Energy Storage Systems



❑ Network Pruning: aims at removing unimportant connections and reducing the 

computational complexity for CNN models

• Why?

❑ Redundant connections exist in the large CNN model

❑ Some neurons are uncorrelated with output

❑ Too much parameters in a CNN model

• How?

❑ Weight-level 

❑ Kernel-level 

❑ Channel-lever 

❑ Layer level 

➢Framework: Evaluate the importance of each 

weight/kernel/channel/layer, remove those unimportant ones.
No

Yes

Battery Energy Storage Systems



• PCNN(S)-TL: remove unimportant 

connections from the CNN(S)-TL model.

• Comparing CNN(T) with CNN(S)-TL, the 

application of transfer learning reduces the 

average normalized estimation error (NEE) by 

22.52%

• Comparing with CNN(T), PCNN(T) and 

CNN(S)-TL, PCNN(S)-TL achieved 68.34% 

model size reduction and 80.97% computation 

savings. 

• CNN(T) : train a CNN model on the small target dataset from scratch.

• PCNN(T): pruning unimportant connections from the CNN(T) model.

• CNN(S)-TL: pre-train a CNN(S) model on a large dataset and transfer the 

learnt knowledge to a small target dataset.

Battery Energy Storage Systems
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Battery Real-time Management

Constrained generalised predictive control (GPC) of battery charging process: 

Step 1:

Using the thermoelectric model output to estimate the
parameters of the controlled auto-regressive
integrated moving average (CARIMA) model.

Step 2:

Calculate the j-step predictions based on online
CARIMA model.

Step 3:

Find the optimal incremental control current,
considering the inequality constraints, extract the first
value of the incremental current control sequence.

Step 4:

Feed the control signal to the actuators.

CARIMA model:

𝐴 𝑧−1 𝑦 𝑘 = 𝑧−𝑑𝐵 𝑧−1 𝑢 𝑘 +
1

∆
𝐶(𝑧−1)𝜀(𝑘)

The J-step output:
𝐶 𝑧−1 𝑦 𝑘 + 𝑗, 𝑘 = 𝐺𝑗 𝑧−1 𝑦 𝑘 + 𝐹𝑗(𝑧

−1)∆𝑢(𝑘 + 𝑗 − 1)

The objective function:

𝐽 = 1 − 𝑎1 ∗ 𝑡𝑓 + 𝑎1 ∗ න
𝑡=0

𝑡=𝑡𝑓

𝑖 𝑡 ∗ 𝑉 𝑡 − 𝑈𝑜𝑐𝑣 𝑡

+𝑖 𝑡 ∗ 𝑇𝑖𝑛 𝑡 ∗ 𝑑𝑈𝑜𝑐𝑣(𝑡)/𝑑𝑇𝑖𝑛 𝑡 𝑑𝑡
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Battery Real-time Management

Simulation results:

Effects to different internal temperatures
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Challenges

ABB&UK Power Networks Energy Storage 
Installation. Rated power: 200 kW.

AES Kilroot Station Battery 
Storage Array. Rated power: 
50000 kW. 

EPSRC Grid Connected Energy Storage 
Research. Rated power: 2000 kW. 

Lithium-ion 
battery

Foula Community Electricity Scheme. 
Rated power: 16 kW

Lead-acid 
battery

Gigha Wind Farm Battery Project. 
Rated power: 100 kW. 

Flow battery

Horse Island Microgrid Project.
Rated power: 12 kW

Northern Powergrid CLNR ESS1. 
Rated power: 2500 kW.

Northern Powergrid CLNR ESS3-2. 
Rated power: 50 kW.

Northern Powergrid CLNR ESS2. 
Rated power: 200kW.

Northern Powergrid CLNR ESS3-1. 
Rated power: 50 kW.

Orkney Storage Park Project
Rated power: 2000kW.

Slough Zero-Carbon Homes Community.
Rated power: 75 kW.

Smarter Network Storage.
Rated power: 6000 kW.

Isle of Rum Microgird System.
Rated power: 45 kW

UK Battery Energy Storage Projects in the UK
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