Conversion of Wet Waste to Fuel and Value-Added Products using Hydrothermal Carbonization

Life cycle analysis

Time (BST)	Session
09:00-09:15	Welcome
09:15-09:45	Session 1: An introduction to life cycle analysis
09:45-10:00	Session 1 Q+A
10:00-10:30	Session 2: Life cycle analysis procedure
10:30-10:45	Session 2 Q+A
10:45-11:00	Break
11:00-11:30	Session 3: Life cycle analysis & hydrothermal carbonisation
11:30-11:45	Session 3 Q+A
11:45-12:00	General Discussion and Close

Session I-An introduction to life cycle analysis

This session will cover:

- What is an LCA? And why is this relevant to HTC?
- A brief history of LCA
- Applications of LCA
- Platforms and software for performing LCAs

Session 2-LCA procedure

This session will cover:

- Components of LCAs
- Goal and Scope definition
- Inventory analysis
- Impact assessment
- > Interpretation
- > Options for further analysis and modelling of results
 - \circ Parameter exploration
 - \circ Sensitivity analysis
 - Uncertainty analysis
 - \circ Statistical modelling

Session 3-Life cycle analysis & hydrothermal carbonisation of wet waste

This session will cover:

- Options concerning treatment of wet waste
- > Options for HTC of wet waste
- Components of HTC LCAs
- Review of existing HTC LCAs
- HTC LCA: Future work

Session I-An introduction to life cycle analysis

What is an LCA? (1)

The LCA is a method to study the following, in relation to the research object (process or product):

- \circ All inputs
- \circ All outputs

> It concerns the research object over the entire life cycle

> It aims to obtain the impact of the research object.

What is an LCA? (2)

- ► LCAs focus on the following:
 - Primarily GHGs
 - Other environmental impacts (such as ecotoxicity, land use etc)
 - Social impacts (i.e. job creation and health)
 - \odot Economic impacts LCC (i.e. cost and savings over life cycle)
- It aims to obtain the environmental, social and/or economic impact of the research object.

Why is LCA relevant to HTC?

Understand environmental, social and economic impacts of HTC

Compare performance of the following:

- \odot HTC compared to competing technologies
- \circ Different feedstock types
- \odot Different HTC process conditions
- Different product applications
- \odot Adoption of HTC in different regions, or specific sites

A brief history of LCA (1)

 First applications in energy and w 	/aste management
 Numerous LCAs conducted, but la -ISO 14040 and ISO 14044 developed -UNEP promoted and supported LCA practic 	-1 st version of Ecoinvent LCI database released
 Some standardisation developed -Emergence of ISO -LCA code of practice Guidelines for Life-Cyc 	: cle Assessment A "Code of Practice" by The Society of Environmental Toxicology and Chemistry
 Development of standardised me 	ethodology, life cycle inventory and promotion of LCA use

Applications of LCA

Product and process comparison

- GHG reduction
- Ecotoxicology reduction
- Cost reduction
- Social benefit

Product/process optimisation

- Identification of problem area
- Identification of alternatives/solutions

Awareness raising

- Identify problem area
- Quantify issues

Policy and strategy development

- Data to inform government policy on sustainable development
- Data to inform company policies on sustainable development
- Data to inform NGOs on areas to focus on

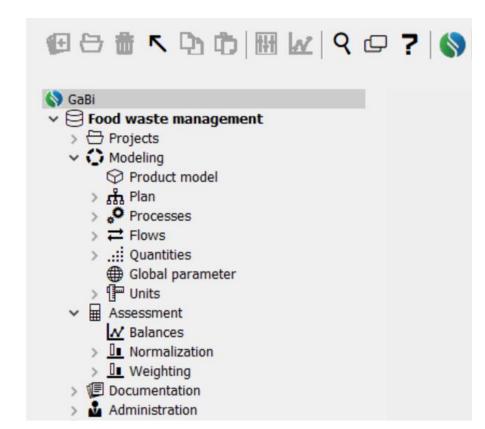
Platforms and software for performing LCAs (1)

Main LCA software

- ≻ GaBi
 - o <u>https://gabi.sphera.com/uk-ireland/index/</u>
- Simapro
 - <u>https://www.simapro.co.uk/simapro?gclid=CjwKCAjwndCKBhAkEiwAgSDKQfoCtyHyNwG2TPuC0dSsLrC4Zbi1SPVj29hQc_3oUTmhjDv8CWH6OxoCtpw</u>
 <u>QAvD_BwE</u>
- One click LCA
 - o https://www.oneclicklca.com/
- > Open LCA (free)
 - o https://www.openica.org/

Waste management LCA

- ➤ WRATE
 - <u>http://www.wrate.co.uk/</u>



Platforms and software for performing LCAs (2)

GaBi

- Interface/platform to design LCAs
- Design system plans
- ➢ Input flows and processes
- ➢ Includes database
- > Assess environmental, economic and social factors
- Explore parameters/tweak systems
- Export results, design reports etc

UNIVERSITY OF LEEDS

Databases for performing LCAs (2)

Software databases

- ≻ GaBi
 - o <u>https://gabi.sphera.com/uk-ireland/databases/</u>
- SimaPro
 - o <u>https://www.simapro.co.uk/?gclid=CjwKCAjwndCKBhAkEiwAgSDKQcdVd3cLE0CIF3B1t_jjBHlQHutqL238bxCy_4TVrVepjrlrqfaHfBoCzUsQAvD_BwE</u>

Specific databases

- Ecoinvent
 - o https://ecoinvent.org/the-ecoinvent-database/

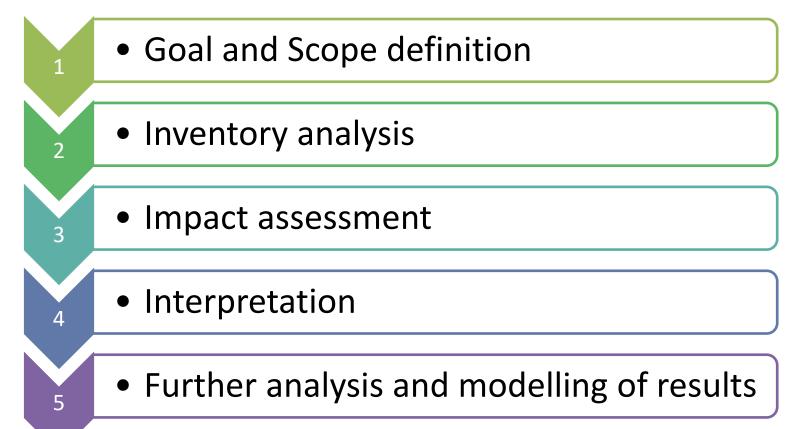
Other sources of data

- ➢ Literature
- Government databases
- Personal data and data from research groups

Question and answer session

- Thank you for listening
- Any Questions?

Session 2-Life cycle analysis procedure



Components of an LCA? (1)

LCA involves the following components:

Goal and Scope definition (1): UK-India Education Goal

➤ The goal of the LCA specifies the following:

 \odot Intended application of results

 \odot i.e. demonstrating the GHG mitigation from HTC of food waste

 \odot The reason for generating the results

 \odot i.e. minimising GHG emissions in food waste treatment

 \odot The expected audience for the results

 \odot i.e. influencing food waste policy to promote HTC

Goal and Scope definition (2): UK-India Education and Research Initiative Scope definition

> The scope definition of the LCA specifies the following:

\odot The nature of the product under examination

 $\ensuremath{\circ}$ Includes the functional unit

 \circ The level of detail in which the research object is being examined Includes:

- \circ the processes,
- \circ the methods, (extent processes are evaluated),
- Assumptions and limitations,
- Assessment of data quality
- $\ensuremath{\circ}$ Critical review

Goal and Scope definition (3): UK-India Education and Research Initiative Specific components (1)

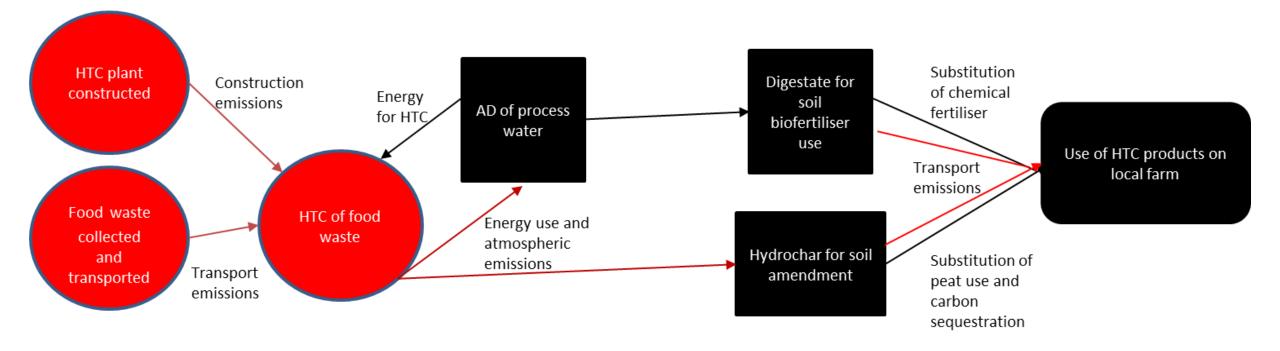
- The Functional unit (the precise specification of the function of the product)
 - \odot I.e. kg CO2eq/kg food waste treated
- > The product system (the main activities)
 - I.e. Transport, heating, drying, end usage/product substitution, end disposal
- Scope (gate-gate, cradle-gate, cradle-cradle, cradle-grave)
 I.e. gate-grave (from the point food waste to end disposal/product substitution)

Goal and scope definition (3): and F Specific components (2) ≻The time and place

- \odot I.e 2021, India
- System boundaries (whether to include indirect emissions)
 Construction of lorries used in transport not included
- Data sourcing (databases, peer-reviewed literature etc)
 I.e only include data from peer reviewed articles

Inventory analysis (1)

- Inventory analysis involves the compilation of quantified inputs and outputs for a system throughout its life cycle.
- > This involves:
 - Preparing for data collection (i.e. deciding what data you require through defining a process chain)
 - Collecting the data
 - Calculating the data (making sure measurements are uniform)
 - Allocating and partitioning (considering system boundaries)



Inventory analysis (2): Preparing for data ➢ Decide what data you require through defining a process chain ○ I.e. for HTC of food waste

UKIERI

UK-India Education

UNIVERSITY OF LEEDS

Inventory analysis (3): and Collecting and calculating data

➤Collecting data includes sourcing from:

○ Databases, literature, government data, experimental data

Calculating data

Ensure that the data is derived from data gained from the same assumptions
Ensure the data is relevant for the scope of the LCA
If there are differences then calculate figures based on LCA scope
Compile data into the format required for the LCA (inputs/outputs)

Inventory analysis (4): Allocating and partitioning

Allocating

- Allocate an appropriate proportion of emissions for emission/mitigation factors that involve other systems
 - I.e. IIT may send 1TPD of food waste to a HTC site that processes 100TPD
 - IIT's food waste contributes to 1% of the total HTC construction emissions, energy usage etc
 - Can also use total energy production, hydrochar produced, or cost for collection for allocation

Partitioning

- Define split off points (what factors to include/exclude)
 - Typically if contribution of input= <1% then exclude
 - I.e. if <1% of total food waste collected by truck is from IIT over lifecycle, can construction and decommission emissions of truck in LCA for HTC of IIT food waste

Impact assessment

Evaluating the significance of the potential impacts of the life cycle of the product, or process

 $\,\circ\,$ I.e. The GHGs associated with IIT sending it's food waste for HTC

- > The impact assessment involves:
- Classification (grouping inputs and outputs with the same type of impacts i.e. global warming potential)
- Characterisation (conversion of impacts into same unit measurement i.e. methane and nitrous oxide to CO2eq

• Weighting (optional) weigh different impact categories differently i.e. GWP> Land use

3

Interpretation

Analysing the results in the context of the research question
 I.e would sending IIT's food waste for HTC lead to GHG reductions

Decide on most important results

Use figures and tables to illustrate key findings
 I.e key GHG generation areas for HTC of food waste
 And key GHG mitigation areas

Decide best format to present results

Discuss limitations of results
 I.e. error margins for data, or credibility of data

Further analysis and modelling of results (1)

Parameter exploration

Can make alterations in LCA systems to assess impacts o I.e impact of using electric trucks for food waste transport

- \circ Or using renewable energy to power HTC reactor
- $\,\circ\,$ Or landfilling digestate instead of use on farm
- Can help optimise systems such as food waste HTC
- Can help identify key risks if system has issues
- Conduct on LCA software

Further analysis and modelling of results (2)

Sensitivity analysis

>Assessment of the robustness of the LCA through measuring:

 $\,\circ\,$ Impact of error margins of variables

 $\,\circ\,$ highest and lowest likely values for all inputs and outputs

Easy and quick to do on Excel or other platforms

• Requires maximum and minimum values for inputs

Further analysis and modelling of results (3)

Uncertainty analysis

> Quantitative assessment of the error present in the data

> Assesses the robustness and reliability of the results

- Can assess the variables that are the most uncertain and have the greatest risk associated
- Takes longer than sensitivity analysis and can be conducted using Palisade @Risk software
 - $\,\circ\,$ Requires multiple values for inputs and outputs
 - o Link: <u>https://www.palisade.com/risk/default.asp</u>

Further analysis and modelling of results (4)

Statistical modelling

Reduce data and minimise variables if complex dataset

Principle component analysis

 $\,\circ\,$ Group variables that are intrinsically linked

 $\,\circ\,$ Make the data more understandable

Multiple linear regression

 $\,\circ\,$ Asses the impact of multiple variables at once

Relatively easy and can be conducted on SPSS or other statistical software

Question and answer session

• Thank you for listening,

• Any Questions?

Session 3-

Life cycle analysis & hydrothermal carbonisation

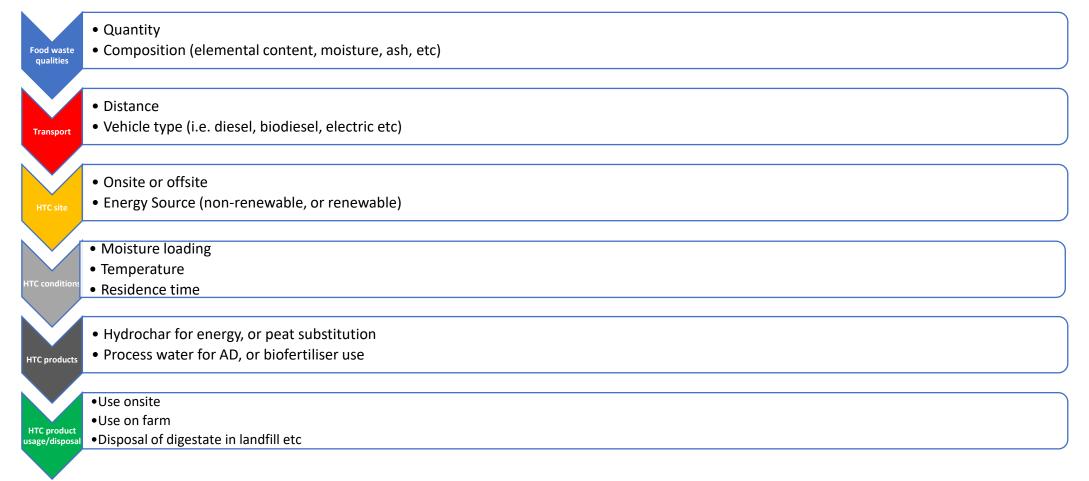
Life cycle analysis & hydrothermal carbonisation

- Specific options concerning treatment of wet waste
- \odot Specific options for HTC of wet waste
- \circ Specific components of HTC
- $\circ~$ Review of existing HTC LCAs
- \circ HTC LCA: Future work

Specific options concerning treatment of wet waste

Treatment options	Products	Pros	Cons
Energy generation		Fossil fuels offset	
Incineration	Energy & ash	Cheap, easy, energy generation	High air pollution, low efficiency
AD	Biomethane & digestate	Energy generation, nutrient recycling, low pollution	High tech, higher cost, potential operation and maintenance issues
HTC	Hydrochar & process water	High energy generation, low pollution	High tech, high cost
Pyrolysis	biochar	High energy generation, low pollution	High tech, high cost
Soil amendment		Soil amendment products substituted	
HTC	Hydrochar & process water	High retention of carbon and nutrients	High energy use and cost
Composting	Compost	Low energy use, low tech, low cost	High atmospheric/fugitive emissions
Disposal			
Landfilling, or dumping	N/A	Low tech, typically low cost	High GHGs and ecotxicity
Maceration	N/A	Low tech, typically low cost	High GHGs and water contamination

Specific options concerning HTC


Treatment options	Products	Processing of products	Pros	Cons
Energy generation			Fossil fuels offset	
	Hydrochar & process water	Combustion of hydrochar AD of process water	High energy generation, clean fuel, more established	Air pollution, no nutrient recycling, no carbon sequestration
Soil amendment			Soil amendment products substituted	
	Hydrochar & process water	Use of hydrochar as a peat substitute Use of process water as a biofertiliser, or for AD	High retention of carbon and nutrients. Substitutes peat (a high emission product)	Lack of studies on suitability as soil amendment product. Not an established product. Low, or no energy generation.
Adsorption			Adsorption products substituted	
	Hydrochar &process water	Use of hydrochar for bioremediation etc Use of process water for AD	High retention of carbon Reduces pollution	Lack of studies on suitability as an adsorption product. Not an established product. Low, or no energy produced

Specific components of HTC LCAs

Review of existing HTC LCAs

HTC options	Environmental performance	Studies
Energy production	Lower processing emissions than pyrolysis	Reiβmann et al. (2018)
	Higher energy gain than incineration and AD	Gupta et al. (2019); Lu et al. (2012)
Soil amendment	Lower processing emissions than composting	Lu et al. (2012)
	More soil amendment produced than composting	
	Considerable GHG mitigation using hydrochar as a peat substitute	
Other considerations	Improved performance using process waters for AD, or as an organic fertiliser	Berge et al. (2015); Li et al. (2013)
	Improved performance scaling up HTC plant size	Owsianiak et al. (2016)
Future considerations	Decarbonisation of grid energy	
	Development of carbon capture and storage	

HTC LCA: Future work

- ➤ Lack of research on:
 - $\circ~$ Influence of food waste composition on HTC performance
 - \odot Influence of region on HTC performance
 - $\circ~$ Socio-economic performance of HTC
 - $\,\circ\,$ Future considerations for HTC
 - \odot HTC and soil amendment
 - $\,\circ\,$ HTC and adsorption

Question and answer session

• Thank you for listening,

• Any Questions?

